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1. Universal Hypersurfaces

These notes are based on [Huy23, §2.1]. Please see the disclaimer section.

A degree d hypersurface X ⊆ P = Pn+1 has equation:

∑aIx
I = 0

where xI represents a monomial in x0, . . . , xn+1 of degree d. Any non-zero
vector (aI) of coefficients gives rise to such a hypersurface, and two such
coefficient vectors (aI) and (bI) give the same hypersurface if and only if
they are scalar multiples of each other. In other words, we can parametrize
all such hypersurface by the projective space:

∣OP(d)∣ = PN(d,n) (N = N(n, d) = (
n + 1 + d

d
) − 1) .

The universal hypersurface X ⊆ PN ×P is defined by the equation:

X = (∑aIx
I = 0) ⊆ PN ×P.

Example 1.1. For example, we see that the universal degree 2 hypersur-
face in P1 is given by the equation:

(a20x
2 + a11xy + a02y

2 = 0) ⊆ P2 ×P1

where we think of aij as the coordinates on P2.

We can think of the equation of the universal hypersurface intrinsi-
cally. If P = P(V ), then H0(P,O(1)) = V (from the perspective that
P parametrizes quotients of V ). Then PN = P(Symd

(V ∨)). And thus:

H0(PN ×P,O(1, d)) ≃ Symd
(V ∨)⊗ Symd

(V )

has a canonical section.

The universal hypersurface is smooth! If we project X→ P, this is actually
a projective bundle. Which projective bundle? The fibers over a point
p ∈ P are precisely the degree d hypersurfaces through that point. So
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these hypersurfaces correspond to the projective space P(H0(P,mp(d))).
We can globalize this perspective. The kernel of the evaluation map:

0→Kd →H0(P,O(d))⊗k OP
ev
Ð→ O(d)→ 0

has the correct kernel at each point, so we have P(Kd) = X.

There are lots of isomorphic hypersurfaces. The easiest way (and almost
the only way) to produce isomorphic hypersurfaces is to look at the image
of a hypersurface under an element A ∈ PGL(n + 2) = Aut(P). Without
defining terms at the moment, the moduli space of degree d hypersurfaces
is the (GIT) quotient:

M(d,n) ∶= ∣OP(d)∣sm//PGL(n + 2).

Morally the moduli space parametrizes degree d hypersurfaces up to iso-
morphism. The dimension is computable:

dimM(d,n) = (
n + 1 + d

d
) − (n + 2)2.

For cubics of small dimension this gives:

n 0 1 2 3 4 5
dimM(3, n) 0 1 4 10 20 35

Mostly we care about the Zariski open set of smooth cubics:

U(d,n) = PN(n,d) ∖D(d,n) ⊆ PN(n,d).

The singular cubics are parametrized by the discriminant locus.

Theorem 1.2. The discriminant locus D(d,n) ⊆ PN(n,d) is an irreducible
divisor of degree (d − 1)n+1 ⋅ (n + 2). For cubics, this gives:

degD(3, n) = 2n+1(n + 2).

Example 1.3. Before working out the general case, let’s figure it out
for the universal quadratic equation. In this case, it is nice to think of
the universal quadratic form as being associated to a bilinear form with
associated matrix:

A = [
a20

1
2a11

1
2a11 a02

] .

A pair of points in P2 is singular ⇐⇒ it’s a double point

⇐⇒ a20x
2 + a11xy + a02y

2 = (
√
a20x +

√
a02y)

2 ⇐⇒ det(A) = 0.

Now det(A) has degree 2, which equals (2 − 1)1 ⋅ (0 + 2).
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Proof. We give a proof when the characteristic does not divide d. By
the Jacobian criterion, a hypersurface X(aI) is singular if and only if the
intersection:

X(aI) ∩ (∩n+1
i=0 Vi) =Xsing ≠ ∅

where Vi is defined by the equation:

Vi = (∂xi
F =∑aI

∂xI

∂xi

= 0) ⊆ P.

Alternatively, we can think of these as hypersurfaces:

Vi ⊆ PN(n,d) ×P

of degree (1, d−1). From this, the singularities of the fibers of the universal
hypersurface are given by:

X ∩ (∩n+1
i=0 Vi) = Xsing ⊆ X ⊆ PN(n,d) ×P.

So we want to compute Xsing and its image D(d,n) ⊆ PN(n,d).

First, we note that ∩Vi ⊆ X and so Xsing = ∩Vi. This is a consequence of the
Euler equation. If F is the equation defining the universal hypersurface:

dF =∑(∂xi
F )xi. (Euler equation)

So if all ∂xi
F = 0 (and the characteristic does not divide d), then F = 0.

Second, the singular locus Xsing ⊆ PN(n,d)×P is actually smooth (and is a
projective bundle). Again, we look at the hypersurfaces through a point
p ∈ P, but only consider the ones singular at that point. This corresponds
to looking at the kernel of the map of sheaves:

H0(P,O(d))⊗k OP → OP(d − 1)⊕n+2 (F ↦ ⊕∂xi
F ).

This map is surjective, so the kernel is a vector bundle, whose projec-
tivization gives Xsing. The dimension of Xsing is thus N(d,n) − 1, and we
have it is smooth and irreducible. It follows that D(d,n) is irreducible of
dimension at most N(d,n) − 1.

By the projection formula, for a map of projective varieties f ∶Y → Z and
a Cartier divisor D on Z we have:

deg(f∗(D)dim(Y )) = deg(deg(Y → f(Y ))f(Y ) ⋅Ddim(Y )).

(So it can only be non-zero if the map is generically finite onto its image).

We apply this to the map Xsing → PN(n,d). Let h1 represent the pull back
of the hyperplane class on PN(n,d) (respectively h2 the pull back of the
hyperplane class from P). This corresponds to the line bundle O(1,0) on
PN(n,d) ×P. We want to compute

deg(h
N(n,d)−1
1 ⋅Xsing) = deg(h

N(n,d)−1
1 ⋅ (∩Vi))
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The divisors Vi are all of type (1, d − 1). So we want to compute

h
N(n,d)−1
1 ⋅ (h1 + (d − 1)h2)

(n+2) = h
N(n,d)−1
1 ⋅∑(

n + 2

i
)(d − 1)ih

(n+2−i)
1 hi

2

= (
n + 2

n + 1
)(d − 1)(n+1)h

N(n,d)
1 h

(n+1)
2

= (n + 2) ⋅ (d − 1)(n+1).

So this shows that the map Xsing →D(d,n) is finite (which proves it is a
divisor). To complete the proof we need to show the degree of the map is
one. At least if the map is separable (let’s assume characteristic 0), this
amounts to checking that the generic singular hypersurface has only one
singularity.

If the generic singular hypersurface has multiple singular points, then for
a generic point p ∈ P, the generic hypersurface that is singular at p will be
singular at another point in P. However, by Bertini’s theorem (with base
points), a generic hypersurface that is singular at p is smooth everywhere
else. �

Remark 1.4. A general, singular hypersurface has exactly one singularity
which is an ordinary double point. As a consequence, a generic pencil of
degree d hypersurfaces consists of only smooth hypersurfaces and singular
hypersurfaces with at most 1 ordinary double point. Such a pencil is called
a Lefschetz pencil.

Exercise 1. Filling in some things from class:

(1) Prove the map of sheaves

H0(P,O(d))⊗k OP → OP(d − 1)⊕n+2 (F ↦ ⊕∂xi
F )

is surjective.
(2) Prove that for any p ∈ P, the generic hypersurface that is singular

at p has an ordinary double point at p (i.e. the tangent cone at p
is a non-singular quadratic form).

Exercise 2. As we mentioned in our example, the discriminant locus
D(2, n) of the universal quadratic form corresponds to those whose asso-
ciated bilinear form is singular (i.e. has nullity ≥ 1).

(1) Reprove the theorem on the degree of the discriminant for these
forms.

(2) Prove that the singular locus of D(2, n) corresponds to the set of
bilinear forms whose matrix has nullity ≥ 2.

(3) (Optional) Can you figure out what happens in characteristic 2?
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